Experimental study on a nonlinear vibration isolator based on a post-buckled inverted L-shaped beam
نویسندگان
چکیده
In this paper, the characteristics and the effectiveness of a nonlinear passive vibration isolator based on a post-buckled beam is investigated experimentally. The intended application is specifically isolation in the vertical direction where the isolator is required to be sufficiently stiff statically to bear the weight of the isolated mass. The isolator consists of two beams joined to form an inverted L-shape and the weight of the isolated mass is taken to act at the vertex. If the weight of isolated mass is larger than the buckling load of the L-shaped beam then the beam buckles in one of two modes, one of which is unstable. In this paper, the static restoring force of the unstable mode is measured and an appropriately selected coil spring is added to counteract the negative stiffness of the beam. The resulting system presents a dramatically lower stiffness to small excursions about its equilibrium position in its buckled state but maintains its static load bearing capability. Free vibration measurements are presented which show some amplitude dependency of the natural frequency for large amplitude motion. Low amplitude harmonic base excitation measurements are also conducted from which transmissibility measurements are obtained and compared with corresponding results from a Finite Element model. The fundamental resonance is about 80% lower than that achievable by a comparable linear isolator. However the potential improvement in isolation performance has not been fully realised in the prototype design due to the presence of higher frequency internal resonances of the isolator, mitigation of which is the focus of ongoing work.
منابع مشابه
Analysis of a vibration isolation table comprising post-buckled -shaped beam isolators
Abstract. In this paper, the static and dynamic characteristics of a nonlinear passive vibration isolation table is investigated through finite element analysis. The intended application is specifically isolation in the vertical direction where the isolator is required to be sufficiently stiff statically to bear the weight of the isolated object and soft dynamically for small oscillations about...
متن کاملThe effect of beam inclination on the performance of a passive vibration isolator using buckled beams
Passive vibration isolators are desired to have both high static stiffness to support large static load and low local stiffness to reduce the displacement transmissibility at frequencies greater than resonance. Utilization of a vertical buckled beam as a spring component is one way to realize such a stiffness characteristic since it exhibits a smaller ratio of local stiffness to static stiffnes...
متن کاملAn analytical approach for the nonlinear forced vibration of clamped-clamped buckled beam
Analytical solutions are attractive for parametric studies and consideration of the problems physics. In addition, analytical solutions can be employed as a reference framewo...
متن کاملIn-Plane and out of Plane Free Vibration of U-Shaped AFM Probes Based on the Nonlocal Elasticity
Atomic force microscope (AFM) has been developed at first for topography imaging; in addition, it is used for characterization of mechanical properties. Most researches have been primarily focused on rectangular single-beam probes to make vibration models simple. Recently, the U-shaped AFM probe is employed to determine sample elastic properties and has been developed to heat samples locally. I...
متن کاملNonlinear Vibration and Stability Analysis of Beam on the Variable Viscoelastic Foundation
The aim of this study is the investigation of the large amplitude deflection of an Euler-Bernoulli beam subjected to an axial load on a viscoelastic foundation with the strong damping. In order to achieve this purpose, the beam nonlinear frequency has been calculated by homotopy perturbation method (HPM) and Hamilton Approach (HA) and it was compared by the exact solutions for the different bou...
متن کامل